Offizielles Organ des Schweizerischen
Chemie- und Pharmaberufe Verbandes

MEDIADATEN

Suche
Close this search box.

Molekularer Reparaturmechanismus für Photokatalysatoren

In Anlehnung an die natürliche Photosynthese ist es deutschen Chemikern gelungen, einen molekularen Photokatalysator «zu reparieren». Der Reparaturprozess ermöglicht die Reaktivierung des katalytischen Systems, so dass die lichtgetriebene Wasserstoffbildung viele Male mit ein und demselben Molekül erfolgen kann. Die Forschenden der Universitäten Ulm und Jena stellen ihr System im Fachjournal «Nature Chemistry» vor.
Reaktor-Apparatur für die Photokatalyse. (Bild: Heiko Grandel / Uni Ulm)

In Anlehnung an die natürliche Photosynthese ist es deutschen Chemikern gelungen, einen molekularen Photokatalysator «zu reparieren». Der Reparaturprozess ermöglicht die Reaktivierung des katalytischen Systems, so dass die lichtgetriebene Wasserstoffbildung viele Male mit ein und demselben Molekül erfolgen kann. Die Forschenden der Universitäten Ulm und Jena stellen ihr System im Fachjournal «Nature Chemistry» vor.


Die natürliche Photosynthese ist ein ideales Vorbild für die Wandlung und Speicherung von Energie aus Sonnenlicht. Chemiker und Chemikerinnen aus Ulm und Jena haben von der Natur einen chemischen «Heilungsprozess» abgeschaut, mit dem sich Photokatalysatoren immer wieder regenerieren können.

Dieser molekulare Reparaturmechanismus sorgt dafür, dass sich die Katalysatoren für die lichtgetriebene Wasserstoffbildung sozusagen selbst in Stand setzen können. Somit kann eine der grundlegenden Einschränkungen bei der Solarenergieumwandlung, die begrenzte Lebensdauer der Katalysatoren, behoben werden. Dieser Vorgang, der aus der Pflanzenwelt bekannt ist, konnte jetzt auch im Labor reproduziert werden, wie Forschende um den Chemiker Sven Rau und den Photophysiker Benjamin Dietzek-Ivanšić gezeigt haben.

Prof. Sven Rau (links) und Prof. Benjamin Dietzek-Ivanšić. (Bilder: Elvira Eberhardt / Uni Ulm und Doering / Leibniz-IPHT)

Ihnen gelang es, den natürlichen Reparaturansatz auf künstliche Photokatalysatoren zu übertragen und damit wichtige Ressourcen und Rohstoffe zu sparen. Eingebettet ist dieser gemeinsame Forschungserfolg im Transregio-Sonderforschungsbereich CataLight.

Die chemischen Prozesse sind verblüffend einfach

Veröffentlicht wurde diese interessante Arbeit im renommierten Fachjournal «Nature Chemistry». Es konnten verschiedene verblüffend einfache chemische Prozesse genutzt werden, um die nach dem Durchlaufen der Katalyse nicht mehr funktionsfähigen Katalysatoren zu reaktivieren. Dank detaillierter struktureller und photophysikalischer Untersuchungen waren die Forschenden in der Lage, die Struktur des beschädigten Photokatalysatormoleküls aufzuklären und den Deaktivierungsmechanismus auf molekularer Ebene zu verstehen. Aufbauend auf diesen grundlegenden Erkenntnissen gelang es den Chemikern, mit gezielten chemischen Reaktionen den Verlust der Katalysefähigkeit des Systems umzukehren. Der Photokatalysator wurde so in seinen Ursprungszustand zurückversetzt und sozusagen «wiederbelebt».

Das Schaubild zeigt den De- und Reaktivierungskreislauf eines Photokatalysator-Moleküls. Der «verbrauchte» bzw. inaktive Photokatalysator wird durch molekulare Reparaturmechanismen reaktiviert. (Grafik: Jannik Brückmann und Lydia Petermann / Uni Ulm)

Nur Licht und Sauerstoff nötig

Dieser regenerative Ansatz liefert neue Lösungskonzepte für die solare Treibstoffforschung. Im Mittelpunkt steht dabei ein Molekül, das gleichzeitig Sonnenlicht absorbieren und Wasserstoff produzieren kann. Obwohl die katalytische Aktivität nach einer gewissen Zeit verloren geht, kann die lichtgetriebene Wasserstoffbildung nach gezielter Reparatur der beschädigten Komponenten erneut in Gang gesetzt werden.

«Wir können diesen molekularen Reparaturprozess, der lediglich Licht und Luftsauerstoff braucht, mehrfach durchführen und damit die katalytische Leistung pro Molekül um ein Vielfaches steigern», erklärt Prof. Sven Rau vom Institut für Anorganische Chemie I der Universität Ulm. Anstatt Photokatalysatoren komplett zu entsorgen und deshalb ständig zusätzliche Materialien für die lichtgetriebene Wasserstoffbildung herstellen zu müssen, können Komponenten, die während der Katalyse beschädigt wurden, kosteneffizient repariert und ökologisch sinnvoll wiederverwendet werden.

Die Forschenden sind davon überzeugt, dass dieser molekulare Reparaturmechanismus von enormer Bedeutung für das gesamte Forschungsfeld ist. Verlängert er einerseits den Zeitraum, über den die lichtgetriebene Wasserstoffentwicklung produktiv ablaufen kann, andererseits ist er auf weitere Klassen an Photokatalysatoren übertragbar, also vielfältig einsetzbar.

Der Transregio-Sonderforschungsbereich TRR 234 CataLight

Eingebettet ist das Forschungsprojekt im Transregio-Sonderforschungsbereich TRR 234 CataLight, der von der Deutschen Forschungsgemeinschaft (DFG) mit zehn Millionen Euro gefördert wird. In diesem Verbundprojekt nehmen sich Forschende der Universitäten Ulm und Jena die natürliche Photosynthese zum Vorbild und entwickeln neue Materialien für die Umwandlung und Speicherung von Sonnenenergie. Der Titel des SFB TRR 234 lautet: «Lichtgetriebene molekulare Katalysatoren in hierarchisch strukturierten Materialien: Synthese und mechanistische Studien (CataLight)»

www.uni-ulm.de

Dr. Lydia Petermann und Andrea Weber-Tuckermann, Universität Ulm


Das könnte Sie auch interessieren:

Newsletter abonnieren

Login