Sie sind hoch selektiv und lassen sich leicht vom Reaktionsgemisch trennen: Einzelatomkatalysatoren vereinen die Vorteile homogener und heterogener Katalyse. Bisher ist ihre Herstellung in der Regel mit Edelmetallen verbunden, die auf einer Festkörperfläche verankert werden. Forschende in Deutschland zeigen jetzt, dass sich solche Strukturen auch elektrochemisch bilden können – selbstständig und ohne Edelmetalle.
MXene sind eine Klasse zweidimensionaler Materialien, die 2011 entdeckt wurde. Theoretische Studien sagten bisher voraus, dass sie in anodischen Prozessen nicht katalytisch aktiv sind. Diese These konnten Forschende an der Universität Duisburg-Essen nun per Multiskalenmodellierung widerlegen.
Sie fanden heraus: Legt man ein elektrisches Potenzial an MXene an, verändert sich ihre Oberfläche zu einer bürstenähnlichen Struktur: Atome unedler Metalle wandern heraus und bilden sogenannte «SAC-like structures» (Single Atom Catalysts-like = ähnlich Einzelatomkatalysatoren). Diese vermitteln zwei wichtige Reaktionen: die Sauerstoff- und die Chlorgasentwicklung.
So entsteht ein Material, dessen Oberfläche ohne die Zugabe von Edelmetallen katalytisch aktive Stellen aufweist. «Wir konnten daraus schliessen, dass sich MXene in einer elektrochemischen Umgebung ähnlich wie Enzyme verhalten: Durch das Anlegen eines elektrischen Potenzials entstehen ihre aktiven Stellen direkt im Prozess», erklärt Prof. Dr. Kai S. Exner, Leiter der Theoretischen Katalyse und Elektrochemie der Universität Duisburg-Essen.
Erleichterte Herstellung von Einzelatomkatalysatoren
Das Team konnte ausserdem zeigen, dass die entstandenen Strukturen selektiv arbeiten: Befinden sich Wasser und Chloridionen gleichzeitig in der Reaktionsumgebung, findet ausschliesslich die Chlorgasentwicklung statt. Diese ist ein zentraler Prozess in der chemischen Industrie, der weltweit jährlich über 70 Millionen Tonnen Chlorgas (Cl2) liefert. Cl2 wird unter anderem zur Herstellung von Medikamenten, Kunststoff und Batterien sowie zur Aufbereitung von Wasser benötigt. Steht der aktiven MXene-Oberfläche lediglich Wasser zur Verfügung, setzt sie hingegen Sauerstoff (O2) frei – ein wichtiger Schritt für die Bildung von grünem Wasserstoff in einem Elektrolyseur. Diese Entdeckung kann die Herstellung von Einzelatomkatalysatoren deutlich erleichtern. Der Verzicht auf teure Edelmetalle reduziert zudem Kosten und Abhängigkeiten.
An der Studie waren auch Forschende der Universität Barcelona sowie des Ruhr Explores Solvation, einem Exzellenzcluster der Universitätsallianz Ruhr, beteiligt. Ihre Erkenntnisse, publiziert in der Fachzeitschrift Journal of the American Chemical Society, eröffnen neue Wege für die einfachere, nachhaltigere Produktion von katalytisch aktiven Materialien.
Birte Vierjahn, Universität Duisburg-Essen